23 Oct 2018
【ML】2 k近邻法
scikit-learn
Nearest Neighbors Classification
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets
n_neighbors = 15
# import some data to play with
iris = datasets.load_iris()
# we only take the first two features. We could avoid this ugly
# slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target
h = .02 # step size in the mesh
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
for weights in ['uniform', 'distance']:
# we create an instance of Neighbours Classifier and fit the data.
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,
edgecolor='k', s=20)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')"
% (n_neighbors, weights))
plt.show()
#!/user/bin/env python
# coding:utf-8
'''
Created on 2018-10-23
Upgrate on 2018-11-03
Anthor: Moriarty12138
Github: https://github.com/Moriarty12138/machine-learning-practice
'''
import numpy as np
from sklearn.datasets import load_boston
def mykNN(X_train, y_train, X_test, K):
'''
get the most close point
:param X_train: train dataset X
:param y_train: train dataset target
:param X_test: test data
:param K: the K
:return: the most close point in X_train
'''
# cal the distance X_test to X_train.
diff = X_train - X_test
squaredDiff = diff ** 2
squaredDist = np.sum(squaredDiff, axis=1)
dist = squaredDist ** 0.5
# sort distance.
sortedDistIndex = np.argsort(dist)
indexCount = {}
for i in range(K):
vote = y_train[sortedDistIndex[i]]
indexCount[vote] = indexCount.get(vote, 0) + 1
# vote the most close point.
maxCount = 0
for key, value in indexCount.items():
if value > maxCount:
maxCount = value
pred = key
# return the point.
return pred
if __name__ == '__main__':
boston = load_boston()
print("loading boston dataset.")
point = 5
K = 10
X_train, X_test, y_train, y_test = boston.data[point:], boston.data[:point], boston.target[point:], boston.target[:point]
X = X_test[1]
y = y_test[1]
y_pred = mykNN(X_train, y_train, X, K)
print("y and pred is:")
print(y,y_pred)
Til next time,
gentlesnow
at 21:48
