25 Oct 2018
【NLP】01 Course Introduction
- Question answering
- Information Extraction
- Information Extraction & Sentiment Analysis
- Machine Translation
- Language Technology
Ambiguity makes NLP hard:
“Crash blossrooms”
- non-standard English
- segmentation issues
- idioms
- neologisms
- world knowledge
- tricky entity names
Teaches key theory and methods for statistical NLP:
- Viterbi
- Naïve Bayes, Maxent classifiers
- N-gram language modeling
- Statistical Parsing
- Inverted index, tf-idf, vector models of meaning
For pracIcal, robust real-world applications
- Information extracIon
- Spelling correction
- Information retrieval
- Sentiment analysis
Skills you’ll need:
- Simple linear algebra(vectors,matrices)
- Basic probability theory
- Java or Python programming
Til next time,
gentlesnow
at 09:14
