Home

gentlesnow

25 Oct 2018

【NLP】01 Course Introduction

  1. Question answering
  2. Information Extraction
  3. Information Extraction & Sentiment Analysis
  4. Machine Translation
  5. Language Technology

Ambiguity makes NLP hard:
“Crash blossrooms”

  1. non-standard English
  2. segmentation issues
  3. idioms
  4. neologisms
  5. world knowledge
  6. tricky entity names

Teaches key theory and methods for statistical NLP:

  1. Viterbi
  2. Naïve Bayes, Maxent classifiers
  3. N-gram language modeling
  4. Statistical Parsing
  5. Inverted index, tf-idf, vector models of meaning

For pracIcal, robust real-world applications

  1. Information extracIon
  2. Spelling correction
  3. Information retrieval
  4. Sentiment analysis

Skills you’ll need:

  1. Simple linear algebra(vectors,matrices)
  2. Basic probability theory
  3. Java or Python programming

Til next time,
gentlesnow at 09:14

scribble